Joint modeling of multivariate longitudinal data and the dropout process in a competing risk setting: application to ICU data
نویسندگان
چکیده
BACKGROUND Joint modeling of longitudinal and survival data has been increasingly considered in clinical trials, notably in cancer and AIDS. In critically ill patients admitted to an intensive care unit (ICU), such models also appear to be of interest in the investigation of the effect of treatment on severity scores due to the likely association between the longitudinal score and the dropout process, either caused by deaths or live discharges from the ICU. However, in this competing risk setting, only cause-specific hazard sub-models for the multiple failure types data have been used. METHODS We propose a joint model that consists of a linear mixed effects submodel for the longitudinal outcome, and a proportional subdistribution hazards submodel for the competing risks survival data, linked together by latent random effects. We use Markov chain Monte Carlo technique of Gibbs sampling to estimate the joint posterior distribution of the unknown parameters of the model. The proposed method is studied and compared to joint model with cause-specific hazards submodel in simulations and applied to a data set that consisted of repeated measurements of severity score and time of discharge and death for 1,401 ICU patients. RESULTS Time by treatment interaction was observed on the evolution of the mean SOFA score when ignoring potentially informative dropouts due to ICU deaths and live discharges from the ICU. In contrast, this was no longer significant when modeling the cause-specific hazards of informative dropouts. Such a time by treatment interaction persisted together with an evidence of treatment effect on the hazard of death when modeling dropout processes through the use of the Fine and Gray model for sub-distribution hazards. CONCLUSIONS In the joint modeling of competing risks with longitudinal response, differences in the handling of competing risk outcomes appear to translate into the estimated difference in treatment effect on the longitudinal outcome. Such a modeling strategy should be carefully defined prior to analysis.
منابع مشابه
Multivariate Frailty Modeling in Joint Analyzing of Recurrent Events with Terminal Event and its Application in Medical Data
Background and Objectives: In many medical situations, people can experience recurrent events with a terminal event. If the terminal event is considered a censor in this type of data, the assumption of independence in the analysis of survival data may be violated. This study was conducted to investigate joint modeling of frequent events and a final event (death) in breast cancer patients using ...
متن کاملA Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response
In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...
متن کاملمدلسازی توام دادههای بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی
Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...
متن کاملA Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...
متن کاملModelling variable dropout in randomised controlled trials with longitudinal outcomes: application to the MAGNETIC study.
BACKGROUND Clinical trials with longitudinally measured outcomes are often plagued by missing data due to patients withdrawing or dropping out from the trial before completing the measurement schedule. The reasons for dropout are sometimes clearly known and recorded during the trial, but in many instances these reasons are unknown or unclear. Often such reasons for dropout are non-ignorable. Ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2010